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Abstract

In this study, we derive analytical solutions of the first two moments (mean and variance) of pressure head for one-dimensional

steady state unsaturated flow in a randomly heterogeneous layered soil column under random boundary conditions. We first lin-

earize the steady state unsaturated flow equations by Kirchhoff transformation and solve the moments of the transformed variable

up to second order in terms of rY and rb, the standard deviations of log hydraulic conductivity Y ¼ lnðKsÞ and of the log pore size

distribution parameter b ¼ lnðaÞ. In addition, we also give solutions for the mean and variance of the unsaturated hydraulic

conductivity. The analytical solutions of moment equations are validated via Monte Carlo simulations.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantification of uncertainties associated with

unsaturated flow in randomly heterogeneous media is

challenging. Most relevant studies are numerical, either

by Monte Carlo simulations or with numerical moment

equation methods [1,3,4,6,8,9,11,16,17,21]. Only a lim-

ited number of analytical solutions to the stochastic

unsaturated flow problem are available in the literature.

Yeh et al. [19] used spectral representations of hetero-
geneous soil properties to derive solutions of pressure

head statistics for gravity-dominated flow (of unit mean

gradient). Zhang et al. [22] gave analytical solutions of

pressure head variance for gravity-dominated flow with

both Gardner–Russo and Brooks–Corey constitutive

models. Indelman et al. [7] derived expressions for

pressure head moments for one-dimensional steady state

unsaturated flow in bounded single-layered heteroge-
neous formations under deterministic boundary condi-

tions (a constant head at the bottom and constant flux at

the top). These expressions contain integrals that have

to be evaluated numerically in general. Tartakovsky
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et al. [15], using the Kirchhoff transformation, solved the

mean pressure head and head variance for the one-
dimensional unsaturated flow problem up to second

order in terms of variability of log saturated hydraulic

conductivity. Although their equations were given in a

more general form, the analytical solution for the one-

dimensional problem is restricted to a special case of a

single-layered soil column with a deterministic pore size

distribution parameter, under deterministic boundary

conditions.
In this paper, we first present analytical solutions (up

to second order) for the statistics (mean and variance) of

pressure head and unsaturated conductivity for one-

dimensional steady state unsaturated flow in a single-

layered heterogeneous soil column with random

boundary conditions, under the assumptions that the

constitutive relationship between pressure head and

unsaturated hydraulic conductivity follows the Gardner
model and that the pore size distribution parameter a is

a random constant in the layer. The solutions are valid

for an entire soil column. We then extend our solutions

to problems with multiple layers, where the statistics of

soil properties in each of these layers may be different.

Our solutions are verified using high resolution Monte

Carlo simulations.

mail to: zhiming@lanl.gov
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2. Mathematical formulation

We start from the steady state equation for flow in a

one-dimensional unsaturated heterogeneous single-lay-

ered soil column

d

dz
Kðz;wÞ dh

dz

� �
¼ 0; a6 z6 b; ð1Þ

with a constant head boundary at the bottom z ¼ a

hðaÞ ¼ Ha; ð2Þ

and a constant flux boundary at the top z ¼ b

Kðz;wÞ dh
dz

����
z¼b

¼ �q; ð3Þ

where w is the pressure head, h ¼ w þ z is the total head,
Ha ¼ Wa þ a is the total head at elevation a, K is the

unsaturated hydraulic conductivity, q is the flux, and z
the vertical coordinate pointing upward. Under this

coordinate system, the infiltration rate q is negative.

Here we assume that both boundary conditions follow

some probability distributions characterized by their

means and variances (i.e., the boundary conditions are

specified with some uncertainties). To be clear later,
specifying boundary conditions with uncertainties al-

lows us to extend our solutions to a soil column with

multiple layers.

Integrating (1) in space and using (3) yields a first-

order ordinary differential equation for h:

Kðz;wÞ dh
dz

¼ �q; ð4Þ

with a boundary condition (2).

To solve (4), it is required to specify some constitutive

relationship between K and w. No universal models are

available for the constitutive relationships. Instead,

several empirical models are usually used, including the

Gardner–Russo model [5,13], the Brooks–Corey model

[2], and the van Genuchten–Mualem model [17]. In most
stochastic models of unsaturated flow, the Gardner–

Russo model is used due to its simplicity. In this study,

we also use the Gardner’s model for mathematical

convenience:

KðzÞ ¼ KsðzÞ exp½aðzÞwðzÞ�; ð5Þ

where aðzÞ is the soil parameter related to the pore size

distribution. In this study, we treat KsðzÞ as a spatially

correlated random function following a log–normal

distribution, which is consistent with the finding of
Russo and Bouton [14] based on field data. For math-

ematical convenience, we consider the soil parameter a
as a random constant, i.e., being a constant in a layer

while varying in probability space, with a log–normal

distribution. The validation of this assumption is

examined numerically in our examples.
Because of randomness in medium properties and

boundary conditions, the governing equations (4) and

(2) become a set of stochastic differential equations

whose solutions are no longer deterministic values but

probability distributions or related quantities such as
statistical moments of the dependent variables. Our aim

is to find the mean head and its associated uncertainty.

Eq. (4) is nonlinear. Upon applying the Kirchhoff

transformation UðzÞ ¼ 1
a exp½ahðzÞ�, (4) becomes a linear

ordinary differential equation:

dU
dz

¼ � q
KsðzÞ

eaz; ð6Þ

with a boundary condition corresponding to (2)

UðaÞ ¼ 1

a
eaHa : ð7Þ

The reason we use the total head h rather than the
pressure head w in this transformation is that the de-

rived equations will be simpler.

2.1. First moments

Because the variability of U depends on the input

variabilities, i.e., those of the soil properties (Ks and a)
and those of the boundary conditions (Ha and q), one
may express U as an infinite series in the following form:

UðzÞ ¼ Uð0Þ þ Uð1Þ þ Uð2Þ þ � � �, where the order of each

term in the series is with respect to r, which is some

combination of variabilities of the input variables. After

substituting this expansion and the following formal

decompositions into (6) and (7): Ha ¼ hHai þ H 0
a,

q ¼ hqi þ q0, KsðzÞ ¼ exp½Y ðzÞ� ¼ exp½hY ðzÞi þ Y 0ðzÞ� ¼
KgðzÞ

P1
n¼0½Y 0�n=n!, and a ¼ expðbÞ ¼ expðhbi þ b0Þ ¼

ag

P1
n¼0ðb

0Þn=n!, collecting terms at separate order, and

noticing that up to second order in rb, the standard

deviation of variability b ¼ lnðaÞ,

eaz  eagz 1

�
þ agzb

0 þ 1

2
agzð1þ agzÞb02

�
; ð8Þ

and

UðaÞ  eaghHai

ag

1

"
þ ðaghHai � 1Þb0 þ agH 0

a þ agb
0H 0

a

þ
a2
ghHai2 � aghHai þ 1

2
b02 þ

a2
g

2
H 02

a

#
; ð9Þ

one obtains the following equations for U up to second

order:

dUð0ÞðzÞ
dz

¼ � hqi
KgðzÞ

eagz; ð10Þ

dUð1ÞðzÞ
dz

¼ � eagz

KgðzÞ
½aghqizb0 � hqiY 0ðzÞ þ q0�; ð11Þ
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and

dUð2ÞðzÞ
dz

¼ � eagz

KgðzÞ
hqiagz

2
ð1

�
þ agzÞb02 � hqiagzb

0Y 0ðzÞ

þ hqi
2

½Y 0ðzÞ�2 þ agzb
0q0 � q0Y 0ðzÞ

�
; ð12Þ

subject to the boundary conditions

Uð0ÞðaÞ ¼ eaghHai

ag

,Ua; ð13Þ
Uð1ÞðaÞ ¼ Ua½ðaghHai � 1Þb0 þ agH 0
a�; ð14Þ

and

Uð2ÞðaÞ ¼ Ua agb
0

�
þ H 0

a þ
1

2
ða2

ghHai2 � aghHai þ 1Þb02

þ 1

2
a2
gH

02
a

�
; ð15Þ

where Kg and ag are the geometric means of the satu-

rated hydraulic conductivity Ks and the pore-size dis-

tribution parameter a, respectively. In the following
derivation, both Kg and ag are considered as constants

within each layer. By taking the ensemble mean of these

equations and their corresponding boundary conditions,

and solving these mean equations, one has

hUð0ÞðzÞi ¼ Ua �
hqi
agKg

ðeagz � eagaÞ; ð16Þ
hUð1ÞðzÞi ¼ 0; ð17Þ

and

hUð2ÞðzÞi ¼ Ua

2
a2
gr

2
Ha

þ Ua

2
ð1� aghHai þ a2

ghHai2Þr2
b

� hqir2
Y

2agKg

ðeagz � eagaÞ �
hqir2

b

2agKg

� ½ð1� agzþ a2
gz

2Þeagz � ð1� agaþ a2
ga

2Þeaga�:
ð18Þ

It can be shown that hUð2ÞðzÞiP 0 for q6 0 (i.e., under

infiltration).
2.2. Second moments

Multiplying Uð1ÞðnÞ on (11) and (14) and taking the

expectation leads to an equation for covariance of the

transformed variable U

dCUðz; nÞ
dz

¼ � eagz

Kg

½hqiagzhb0Uð1ÞðnÞi � hqi

� hY 0ðzÞUð1ÞðnÞi þ hq0Uð1ÞðnÞi�; ð19Þ

with the boundary condition
CUðz; nÞjz¼a ¼ Ua½ðaghHai � 1Þhb0Uð1ÞðnÞi þ ag

� hH 0
aU

ð1ÞðnÞi�; ð20Þ

which involves the cross-covariance functions

hb0Uð1ÞðnÞi, hq0Uð1ÞðnÞi, hH 0
aU

ð1ÞðnÞi, and hY 0ðzÞUð1ÞðnÞi.
By writing (11) and (14) in terms of n, and multi-

plying the derived equations by b0, taking the ensemble

mean, and assuming that b0, Y 0, and q0 are independent,
we obtain the equation for the covariance hb0Uð1ÞðnÞi

dhb0Uð1ÞðnÞi
dn

¼ �
hqiagr2

b

Kg

neagn; ð21Þ

subject to the following boundary condition:

hb0Uð1ÞðnÞijn¼a ¼ UaðaghHai � 1Þr2
b: ð22Þ

Here we have utilized the fact that b and Ha are un-

correlated, i.e., hb0H 0
ai � 0, at the particular boundary

conditions in our problem.

Similarly, the equations and their corresponding

boundary conditions for covariance hq0Uð1ÞðnÞi,
hH 0

aU
ð1ÞðnÞi, and hY 0ðzÞUð1ÞðnÞi are given as:

dhq0Uð1ÞðnÞi
dn

¼ �
r2
q

Kg

eagn; ð23Þ

hq0Uð1ÞðnÞijn¼a ¼ Uaaghq0H 0
ai; ð24Þ

dhH 0
aU

ð1ÞðnÞi
dn

¼ �hq0H 0
ai

Kg

eagn; ð25Þ

hH 0
aU

ð1ÞðnÞijn¼a ¼ Uaagr
2
Ha
; ð26Þ

and

dhY 0ðzÞUð1ÞðnÞi
dn

¼ hqi
Kg

CY ðz; nÞeagn; ð27Þ

hY 0ðzÞUð1ÞðnÞijn¼a ¼ 0: ð28Þ

Eqs. (21)–(26) can be easily solved:

hb0Uð1ÞðnÞi ¼ UaðaghHai � 1Þr2
b �

hqir2
b

agKg

� ½ðagn � 1Þeagn � ðaga� 1Þeaga�; ð29Þ

hq0Uð1ÞðnÞi ¼ Uaaghq0H 0
ai �

r2
q

agKg

ðeagn � eagaÞ; ð30Þ

and

hH 0
aU

ð1ÞðnÞi ¼ Uaagr
2
Ha

� hq0H 0
ai

agKg

ðeagn � eagaÞ: ð31Þ

Eqs. (27) and (28) involve the covariance function of log

hydraulic conductivity, CY ðz; nÞ. For convenience, we

assume CY ðz; nÞ is an exponential function, i.e.,

CY ðz; nÞ ¼ r2
Y expð�jz� nj=kÞ, where k is the correlation

length of log hydraulic conductivity. Because CUðz; nÞ is
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symmetric with respect to z and n, to find the variance of

U, we only need to solve hY 0ðzÞUð1ÞðnÞi from (27) and

(28) for the case of z6 n:

hY 0ðzÞUð1ÞðnÞi ¼ hqikr2
Y

Kg

2eagz

1� a2
gk

2

"
� eaga�ðz�aÞ=k

agk þ 1

þ eagn�ðn�zÞ=k

agk � 1

#
: ð32Þ

By substituting (29)–(32) into (19) and (20), solving

for CUðz; nÞ, and setting n ¼ z, we obtain the variance

r2
UðzÞ

r2
UðzÞ ¼ U2

aa
2
gr

2
Ha

þ U2
aðaghHai � 1Þ2r2

b �
2Ua

Kg

hq0H 0
ai

� ½eagz � eaga� �
2hqiUar2

b

agKg

ðaghHai � 1Þ

� ½ðagz� 1Þeagz � ðaga� 1Þeaga�

þ
hqi2r2

b

a2
gK

2
g

½ðagz� 1Þeagz � ðaga� 1ÞeagaÞ�2

þ
r2
q

a2
gK2

g

ðeagz � eagaÞ2 þ hqi2kr2
Y e

2aga

agK2
g ð1� a2

gk
2Þ

� ½2agke
ðag�1=kÞðz�aÞ � ð1� agkÞe2agðz�aÞ � ð1þ agkÞ�

ð33Þ

The first four terms on the right hand side of (33) are the

contributions of the input variabilities through the lower
boundary, while the remaining three terms on the right

hand side are the contributions of the respective b, q,
and Y variabilities. Note that both terms with r2

q and r2
Y

are in the order of expð2agzÞ for large values of z, while
the term with r2

b is in the order of ðagz� 1Þ2 expð2agzÞ.
Because a large r2

U corresponds to a large head variance

(see next subsection), this explains why as the increase of

elevation z, the contribution of r2
b to head variance is

much more important than that of r2
Y [9,23].

2.3. Conversion from U to h

As the variable U is only an intermediate variable,

once the first and second moments of transformed var-

iable U are solved, we must transform them back to the

original variable, the total head h. By writing
hðzÞ ¼

P1
n¼1 h

ðnÞðzÞ, recalling the expansions for a and U,

and substituting these into relationship ahðzÞ¼ ln½aUðzÞ�,
we have

agð1þ b0 þ � � �Þðhð0Þ þ hð1Þ þ � � �Þ

¼ ln age
b0Uð0Þ

X1
n¼0

UðnÞ

Uð0Þ

" #

¼ lnðagU
ð0ÞÞ þ b0 þ ln 1

 
þ
X1
n¼0

UðnÞ

Uð0Þ

!
; ð34Þ
where Uð0Þ ¼ hUð0Þi. Expanding the logarithm in the last

equation and collecting terms at separate order (up to

second order) yields the equations for the total head up

to second order

aghð0ÞðzÞ ¼ ln½agU
ð0ÞðzÞ�; ð35Þ
aghð1ÞðzÞ þ agb
0hð0ÞðzÞ ¼ b0 þ Uð1ÞðzÞ=Uð0ÞðzÞ; ð36Þ

or

hð1ÞðzÞ ¼ 1

a

�
� hð0ÞðzÞ

�
b0 þ Uð1ÞðzÞ

agU
ð0ÞðzÞ

; ð37Þ

and

ag hð2ÞðzÞ
�

þ b0hð1ÞðzÞ þ 1

2
b02hð0ÞðzÞ

�

¼ Uð2ÞðzÞ
Uð0ÞðzÞ

� 1

2

Uð1ÞðzÞ
Uð0ÞðzÞ

" #2
: ð38Þ
2.3.1. First moment of head

By taking the mean of (35), (37), and (38) and solve

for hhð0Þi, hhð1Þi, and hhð2Þi, we have

hð0ÞðzÞ ¼ 1

ag

ln½agU
ð0ÞðzÞ� ¼ 1

ag

ln eaghHai
�

� hqi
Kg

ðeagz � eagaÞ
�
;

ð39Þ

hhð1ÞðzÞi � 0, and

hhð2ÞðzÞi ¼ �
r2

b

ag

þ 1

2
r2

bh
ð0ÞðzÞ � hb0Uð1ÞðzÞi

aghUð0ÞðzÞi

þ hUð2ÞðzÞi
aghUð0ÞðzÞi

� r2
UðzÞ

2aghUð0ÞðzÞi2
: ð40Þ

For unsaturated flow, up to first-order, (39) implies

0 < aUð0ÞðzÞ < expðazÞ. This requires that �hqi6Kgð1�
eagðhHai�zÞÞ=ð1� eagða�zÞÞ for the case of infiltration, or

hqi6Kge
aghHai=ðeagz � eagaÞ for evapotranspiration (i.e.,

hqi > 0). The latter can be interplated as the maximum

water flux at location z and could be used to calculate
the maximum evapotranspiration rate at surface.
2.3.2. Second moments of head

The cross-covariance between total head h and other

independent variables can be derived from (37), for
example

hq0hð1ÞðzÞi ¼ hq0Uð1ÞðzÞi
aghUð0ÞðzÞi

; ð41Þ

and the variance of the pressure head, which is the same

as the variance of the total head, can be derived from

(37)



Z. Lu, D. Zhang / Advances in Water Resources 27 (2004) 775–784 779
r2
wðzÞ ¼ r2

hðzÞ ¼
r2

b

a2
g

ð1� aghð0ÞðzÞÞ2 þ
2ð1� aghð0ÞðzÞÞ

a2
ghUð0ÞðzÞi

� hb0Uð1ÞðzÞi þ r2
UðzÞ

a2
ghUð0ÞðzÞi2

: ð42Þ

Note that, in the case of r2
b � 0, (40) and (42) reduce to

(46) and (47) of Tartakovsky et al. [15].

2.4. Multi-layer soil column

For a soil column with n layers defined by z1 < z2 <
� � � < znþ1 and given boundary conditions as infiltration
at the top z ¼ znþ1 and constant pressure head at the

bottom z ¼ z1, solutions can be derived upward

sequentially from the bottom to the top layer. An

important observation is that, at the given boundary

conditions, the variance of the transformed variable U
(and thus the head variance) in any layer (including the

top interface of the layer) is independent of hydraulic

properties of all overlying layers. This implies that U0
k,

the perturbation of U in the kth layer, is uncorrelated

with the hydraulic properties Y and a of the overlying

layers.

Now we can outline the solution procedure for the

multiple layer systems as follows. Started from the

bottom layer ðk ¼ 1Þ,

1. set a ¼ zk, and b ¼ zkþ1;

2. solve for first moments of the transformed variable

Uð0Þ, and Uð2Þ from (16) and (18);

3. solve for variance r2
U and cross-covariance hb0Uð1Þi,

hq0Uð1Þi, hH 0
aU

ð1Þi, and hY 0Uð1Þi from (29)–(33);

4. compute mean head hð0Þ and hð2Þ from (39) and (40);

5. compute head variance r2
w using (42);

6. evaluate hq0hð1Þi at the top boundary of the layer using

(41). This value is taken as input to (30) and (31);

7. set hHai ¼ hð0Þðzkþ1Þ þ hð2Þðzkþ1Þ and r2
Ha

¼ r2
hðzkþ1Þ as

the boundary conditions at the bottom of the overly-

ing layer k þ 1 and repeat steps (1)–(6) for each addi-
tional overlying layer.

2.5. Unsaturated hydraulic conductivity

From (5) and the expression UðzÞ ¼ 1
a expðahðzÞÞ, we

have

KðzÞ ¼ aKsUe�az: ð43Þ
Writing K ¼ Kð0Þ þ Kð1Þ þ � � �, and substituting expan-

sions of a, Ks, and U into (43) and separating terms at

different order yields

Kð0ÞðzÞ ¼ agKge
�agzUð0ÞðzÞ; ð44Þ

Kð1ÞðzÞ ¼ agKge
�agz½Uð1ÞðzÞ þ Uð0ÞðzÞY 0ðzÞ

þ ð1� agzÞUð0ÞðzÞb0�; ð45Þ
and

Kð2ÞðzÞ ¼ agKge
�agz½Uð2ÞðzÞ þ Y 0ðzÞUð1ÞðzÞ

þ ð1� agzÞb0Uð1ÞðzÞ þ Uð0ÞðzÞð1� agzÞb0Y 0ðzÞ
þ Uð0ÞðzÞr2

Y =2þ Uð0ÞðzÞð1� 3agzþ a2
gz

2Þr2
b=2�:
ð46Þ

By taking the expectation of (44)–(46), we have

hKð0ÞðzÞi ¼ Kð0ÞðzÞ ¼ agKge
�agzUð0ÞðzÞ

¼ Kge
agWa � hqið1� eagða�zÞÞ; ð47Þ

hKð1ÞðzÞi � 0, and

hKð2ÞðzÞi ¼ agKge
�agz½hUð2ÞðzÞi þ hY 0ðzÞUð1ÞðzÞi

þ ð1� agzÞhb0Uð1ÞðzÞi þ Uð0ÞðzÞr2
Y =2

þ Uð0ÞðzÞð1� 3agzþ a2
gz

2Þr2
b=2�: ð48Þ

The variance of the unsaturated hydraulic conductivity

can be derived from (45):

r2
KðzÞ ¼ a2

gK
2
g e

�2agz½r2
UðzÞ þ ½Uð0Þ�2r2

Y þ ð1� agzÞ2½Uð0Þ�2r2
b�

þ 2Uð0ÞhY 0ðzÞUð1ÞðzÞi þ 2ð1� agzÞUð0Þhb0Uð1ÞðzÞi:
ð49Þ
3. Illustrative examples

In this section, we demonstrate the accuracy of our

second-order analytical solutions of the mean pressure
head and the head variance for one-dimensional steady

state unsaturated flow in a hypothetical layered soil

column, by comparing our results with those from

Monte Carlo simulations.

3.1. Base case

In our base case, denoted by Case 1, we consider a

one-dimensional heterogeneous soil column with three

layers. The length of the soil column is 20 m and the

thickness of these layers (from the bottom to the top
layer) is 5, 5, and 10 m, respectively. The column is

uniformly discretized into 400 line segments (one-

dimensional elements) of 0.05 m in length. The origin of

the vertical coordinate is set at the bottom of the col-

umn. The mean total head is prescribed at the bottom as

hHai ¼ 0:0 m (i.e., hWai ¼ 0:0, the water table) and

r2
Ha

¼ r2
Wa

� 0, and the mean infiltration rate is given at

the top as hqi ¼ �0:002 m/day with a standard deviation
of rq ¼ 0:0004 m/day, i.e., the coefficient of variation

CVq ¼ 20%. The means of the log saturated hydraulic

conductivity for three layers are given as hY i ¼ 0:0,
)2.0, and 2.0 (in the unit of ln[m/day]), respectively, with

the coefficient of variation CVKs
¼ 100% ðr2

Y ¼ 0:693Þ
for all layers. The correlation length of the log hydraulic
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conductivity is k ¼ 1:0 m for all layers. The statistics of

the logarithm of the pore size distribution parameter are

given as hbi ¼ 0:5, 1.0, and 0.5 (in the unit of ln[1/m]),

respectively, with CVa ¼ 10% for all layers.

For the purpose of comparison, we conducted Monte
Carlo simulations. For the three layers, we generate

three sets of realizations, each of which includes 50,000

one-dimensional unconditional realizations. Each set of

these realizations has been tested separately by com-

paring their sample statistics (the mean, variance, and

correlation length) against the input statistics. The

comparisons show that the generated random fields

reproduce the specified mean and covariance structure
very well. Realizations of the log hydraulic conductivity

fields for the whole column are then composed by three

realizations chosen from each set of realizations.

The steady state unsaturated flow equation, i.e. (1), is

solved, using Yeh’s algorithm [20], for each realization

of the log hydraulic conductivity field together with

three independently-generated random numbers repre-

senting the logarithm of the pore size distribution
parameter for the three layers. If a solution of pressure

head contains any positive values (i.e., the column is

partially saturated), the realization corresponding to this
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Fig. 2. (a) Mean and (b) standard deviation of unsaturate
solution is simply removed. The sample statistics of the

flow field, i.e., the mean prediction of head and its

associated uncertainty (variance) as well as the mean

and variance of unsaturated hydraulic conductivity, are

then computed from the rest of realizations. These sta-
tistics are considered the ‘‘true’’ solutions that are used

to compare against the derived analytical solutions of

the moment equations.

Fig. 1a compares the mean pressure head derived

from Monte Carlo simulations (the solid line) and ze-

roth- and second-order analytical solutions (dashed line

and dashed-dotted line). It is seen from the figure that

while the zeroth-order solution slightly deviates from
Monte Carlo results, the second-order solution is almost

identical to the latter. A comparison of the standard

deviations of pressure head computed from Monte

Carlo simulations and analytical solutions is illustrated

in Fig. 1b. It shows that the two solutions are very close.

Fig. 2 compares the unsaturated hydraulic conductivity

statistics resulted from Monte Carlo simulations and

analytical solutions to the moment equations. Again,
these results are in excellent agreement, though the

analytical results are systematically underestimated. The

reason for such underestimation is still not clear and
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further investigation may be needed. Here we would like

to mention that although the variability of Y and b in

each layer are not very large, the total variability of ei-

ther Y or b for the whole column is still relatively large

because of the contrast between layers [10].
3.2. Large variability of Y and b

Now we would like to investigate the validity of our

solutions at very large variabilities of Y and b. Fig. 3
depicts the comparisons of Monte Carlo results and

analytical solutions at r2
Y ¼ 4:0 (the coefficient of vari-

ation CVKs
¼ 732%). Note that at such a large vari-

ability, the zeroth-order analytical solution of the mean

pressure head greatly deviates from the Monte Carlo

results. However, after including the second-order cor-

rections the solution is almost identical to the Monte

Carlo results. The head variance from our analytical

solution is reasonably close to Monte Carlo results.

There are two possible reasons that contribute to the
discrepancy between the head variances computed from

Monte Carlo simulations and analytical solutions. First,

the head variance r2
w½z� ¼ h½wð1ÞðzÞ�2i from the analytical

solutions represents the lowest-order approximation of
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Fig. 4. (a) Mean and (b) standard deviation of pressure hea
the pressure head variance. Second, due to the large

variability on Y , the saturated hydraulic conductivity Ks

in some points of realizations is so low that the medium

becomes partially saturated and thus these realizations

are removed in the Monte Carlo simulations. Overall,
2590 (¼ 12.7%) out of 20,000 realizations, have been

removed for this case.

Fig. 4 compares the Monte Carlo results and ana-

lytical solutions for a large b variability r2
b ¼ 0:087

(CVa ¼ 30%). A few observations can be made from this

figure. First, the analytical solutions are very close to the

Monte Carlo results even at such a large variability of b.
In addition, if we compare this figure with Fig. 3, we find
that the head variance due to CVa ¼ 30% is much larger

that that due to CVKs
¼ 732%. This finding is consistent

with our early conclusion [23] that the contribution of b
variability to the head variance is much more important

than is the contribution of Y variability.
3.3. Random constant a approximation

Another interesting point we would like to explore is

the influence of our assumption (or approximation) of

random constant a. We do so with a new set of Monte
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Carlo simulations. In Case 4, instead of generating a

random number as the a value for each layer, we now

compose the correlated random fields of a for the whole

column in the same way as we did for the realizations of

Y , already described above.
Fig. 5 compares results from our analytical solutions

in which a in each layer is a random constant against

those from Monte Carlo simulations where a in each

layer is a correlated random function. Comparing it to

Fig. 1 shows that our analytical solutions are in excellent

agreement with Monte Carlo results in the first and

second layer (counting from the bottom) but there is a

discrepancy in the top layer, especially for the head
variance. A similar pattern is observed by comparing the

unsaturated conductivity statistics (not shown here). We

suspect that this may be due to the large thickness of this

layer (10 correlation length).

In order to check this, we analyzed two more cases. In

Case 5, the top layer (10 m) is further divided into two

layers with thickness of 5 m each. The properties of the

third layer are the same as those of the top layer in Case
4, and the fourth layer are the same as the second layer
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Fig. 5. (a) Mean and (b) standard deviation of pressure head for Case 4. All

simulations is a spatially correlated random function in each layer rather th
of Case 4. Again, in Monte Carlo simulations, a in each

layer is a correlated random function (correlation length

k ¼ 1:0), while in our analytical solutions, a is a random

constant. The comparison is illustrated in Figs. 6 and 7.

It is now seen that the analytical solutions are in excel-
lent agreement with Monte Carlo results. In Case 6, the

layer configuration is the same as in Case 4, but now we

increase the correlation length of a in the top layer from

1 to 2.5 m, i.e., the top layer is 4 correlation length in

thickness (10 m). The results are shown in Fig. 8. Cer-

tainly, compared to Fig. 5, the agreement between

Monte Carlo results and our analytical solutions has

been significantly improved. Fig. 9 shows such com-
parison for unsaturated hydraulic conductivity.

The results from these two cases imply that when the

layer thickness is relatively small (in physical length) or

the correlation length of a is relatively large, the corre-

lated random function may be approximated very well

by a random constant. These results are consistent with

the finding of Yeh et al. [19] and that of Hopmans [6]. In

fact, a random constant is a special case of correlated
field with a correlation length of infinity.
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Fig. 7. (a) Mean and (b) standard deviation of unsaturated hydraulic conductivity for Case 5.
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Fig. 8. (a) Mean and (b) standard deviation of pressure head for Case 6.
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Fig. 9. (a) Mean and (b) standard deviation of unsaturated hydraulic conductivity for Case 6.
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4. Summary

We derived analytical solutions of the first two mo-

ments (mean and variance) of the pressure head and the

unsaturated hydraulic conductivity for one-dimensional

steady state unsaturated flow in a randomly heteroge-
neous layered soil column under random boundary

conditions (a prescribed constant head at the bottom

and a flux at the top boundary), with an assumption that

the constitutive relation between the unsaturated

hydraulic conductivity and the pressure head follows

Gardner’s exponential model. Unlike most of analytical
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solutions in literature for unsaturated flow in heteroge-

neous soil column, our solutions are not limited to the

gravity-dominated regime but vaild for the entire

unsaturated zone. Our solutions are second order in

terms of the standard deviations of the log hydraulic
conductivity and the pore size distribution parameter.

The accuracy of these second order solutions is verified

using Monte Carlo simulations. Numerical examples

show that these solutions are valid for relatively large

variabilities in soil properties.

Our solutions of the first two moments of the pressure

head are derived based on the assumption (or approxi-

mation) that the pore size distribution parameter a is a
random constant in each layer. Numerical examples

indicated that such an approximation may be appro-

priate if the ratio of the correlation length of a in any

layer to the layer thickness is relatively large (e.g., 0.25

in Case 6). In the limit that this ratio goes to infinity, the

random constant treatment becomes exact.
References

[1] Andersson J, Shapiro AM. Stochastic analysis of one-dimensional

steady state unsaturated flow: a comparison of Monte Carlo

and perturbation methods. Water Resour Res 1983;19(1):

121–33.

[2] Brooks RH, Corey AT. Hydraulic properties of porous media.

Hydrol. Pap. 3, Colo. State Univ., Fort Collins, 1964.

[3] Ferrante M, Yeh JT-C. Head and flux variability in heterogeneous

unsaturated soils under transient flow conditions. Water Resour

Res 1999;35(4):1471–9.

[4] Foussereau X, Graham WD, Rao PSC. Stochastic analysis of

transient flow in unsaturated heterogeneous soils. Water Resour

Res 2000;36(4):891–910.

[5] Gardner WR. Some steady state solutions of unsaturated mois-

ture flow equations with application to evaporation from a water

table. Soil Sci 1958;85:228–32.

[6] Hopmans JW, Schukking H, Torfs PJJF. Two-dimensional

steady-state unsaturated water flow in heterogeneous soils with

autocorrelated soil hydraulic properties. Water Resour Res

1988;24(12):2005–17.
[7] Indelman P, Or D, Rubin Y. Stochastic analysis of unsaturated

steady state flow through bounded heterogeneous formations.

Water Resour Res 1993;29:1141–8.

[8] Lu Z, Neuman SP, Guadagnini A, Tartakovsky DM. Conditional

moment analysis of steady state unsaturated flow in bounded

randomly heterogeneous porous soils. Water Resour Res

2002;38(4), doi:10.1029/2001WR000278.

[9] Lu Z, Zhang D. Stochastic analysis of transient flow in hetero-

geneous, variably saturated porous media: the van Genuchten–

Mualem constitute model. Vadose Zone J 2002;1:137–49.

[10] Lu Z, Zhang D. On stochastic modeling of flow in multimodal

heterogeneous formations. Water Resour Res 2002;38(10):1190,

doi:10.1029/2001WR001026.

[11] Romano N, Brunone B, Santini A. Numerical analysis of one-

dimensional unsaturated flow in layered soils. Adv Water Resour

1998;21:315–24.

[13] Russo D. Determining soil hydraulic properties by parameter

estimation: on the selection of a model for the hydraulic

properties. Water Resour Res 1988;24:453–9.

[14] Russo D, Bouton M. Statistical analysis of spatial variability in

unsaturated flow parameters. Water Resour Res 1992;28(7):1925–

91.

[15] Tartakovsky DM, Neuman SP, Lu Z. Conditional stochastic

averaging of steady state unsaturated flow by means of Kirchhoff

transformation. Water Resour Res 1999;35(3):731–45.

[16] Unlu K, Nielsen DR, Biggar JW. Stochastic analysis of unsatu-

rated flow: one-dimensional Monte Carlo simulations and com-

parisons with spectral perturbation analysis and field

observations. Water Resour Res 1990;26(9):2207–18.

[17] van Genuchten MTh. A closed-form equation for predicting the

hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J

1980;44:892–8.

[19] Yeh T-C, Gelhar LW, Gutjahr AL. Stochastic analysis of

unsaturated flow in heterogeneous soils: 1. Statistically isotropic

media. Water Resour Res 1985;21:447–56.

[20] Yeh JT-C. One-dimensional steady-state infiltration in heteroge-

neous soils. Water Resour Res 1989;25(10):2149–58.

[21] Zhang D, Wallstrom TC, Winter CL. Stochastic analysis of

steady-state unsaturated flow in heterogeneous media: Compar-

ison of the Brooks–Corey and Gardner–Russo models. Water

Resour Res 1998;34(6):1437–49.

[22] Zhang D, Winter CL. Nonstationary stochastic analysis of steady-

state flow through variably saturated, heterogeneous media.

Water Resour Res 1998;34(5):1091–100.

[23] Zhang D, Lu Z. Stochastic analysis of flow in a heterogeneous

unsaturated-saturated system. Water Resour Res 2002;38(2),

10.1029/2001WR000515.

http://dx.doi.org/10.1029/2001WR000278
http://dx.doi.org/10.1029/2001WR001026
http://dx.doi.org/10.1029/2001WR000515

	Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation
	Introduction
	Mathematical formulation
	First moments
	Second moments
	Conversion from Phi to h
	First moment of head
	Second moments of head

	Multi-layer soil column
	Unsaturated hydraulic conductivity

	Illustrative examples
	Base case
	Large variability of Y and beta
	Random constant alpha approximation

	Summary
	References


